UNIT-01

Data structure A data structure is a specialized format for organizing and storing data.
General data structure types include the array, the file, the record, the table, the tree, and so on.
Any data structure is designed to organize data to suit a specific purpose so that it can be accessed
and worked with in appropriate ways
Abstract Data Type

In computer science, an abstract data type (ADT) is a mathematical model for data types
where a data type is defined by its behavior (semantics) from the point of view of a user
of the data, specifically in terms of possible values, possible operations on data of this type,
and the behavior of these operations. When a class is used as a type, it is an abstract type that
refers to a hidden representation. In this model an ADT is typically implemented as a class, and
each instance of the ADT is usually a n object of that class.
In ADT all the implementation details arc hidden

Data Structures

I
I |

Built-in Data Uzer Defined
Structures Data Structures
I [
‘ | | | l 1
| Integer | Float Character | Pointer | Arrays Lists Files
| Linear Lists ‘ I Non-Linear Lists |
Stacks |QU5UES| | Trees | lGrﬁ;}hsl

e Linear data structures are the data structures in which data is arranged ina list or in a
sequence.
® Non linear data structures are the data structures in which data may be arranged in a
hierarchic al manner
LIST ADT
List is basically the collection of elements arrange d in a sequential manner. In memory
we can store the list in two ways: one way is we can store the elements in sequential
memory locations. That means we can store the list in arrays.
The other way is we can use pointers or links to associate elements sequentially.
This is known as linked list.

LINKED LISTS

The linked list is very different type of collection from an array. Using such lists, we can
store collections of information limited only by the total amount of memory that the OS will allow
us to use.Further more, there is no need to specity our needs in advance. The linked list is very
flexible dynamic data structure : items may be added to it or deleted from it at will. A programmer
need not worry about how many items a program will have to accommodate in advance. This
allows us to writc robust programs which require much less maintenance.

DEPARTMENT OF CSE Page 1 of 53

The linked allocation has the following draw backs:
I. No direct access to a particular element.
2. Additional memory required for pointers.

Linked list are of 3 types:
I. Singly Linked List

2. Doubly Linked List

3. Circularly Linked List

SINGLY LINKED LIST

A singly linked list, or simply a linked list, 1s a linear collection of data items. The linear order is
given by means of POINTERS. These types of lists are often referred to as linear linked list.

* Each item in the list is called a node.

* Fach nodc of the list has two fields:

1. Information- contains the item being stored in the list.

2. Next address- contains the address of the next item in the list.

* The last node in the list contains NULL pointer to indicate that it is the end of the list.

Conceptual view of Singly Linked List

A
\ 4
\ 4

Data | Ptr Data | Ptr Data | Ptr Data |NULL

Operations on Singly linked list:
Insertion of a node

» Decletions of a node
» Traversing thelist

Structure of a node:
Method -1:

struct node
]

f Data link
int data;
struct node *link:

Method -2:

class node

f
1

public:
int data;
node *link;

DEPARTMENT OF CSE

Page 2 of 53

Insertions: To place an elements in the list there are 3 cases :
1. At the beginning

2. End of'the list

3. At a given position

case l:Insert at the beginning

Eg:
head last
10 A ™ 20 » 30 ™ 40 NULL

temp — 5

head is the pointer variable which contains address of the first node and temp contains address of
new node to be inserted then sample codeis

temp->link=head;

head=temp;
After insertion:
Insert at the beginning of list.
lfad TST
50 > 10 > 20 » 30 ™ 40 NUEE

Code for insert front:-
template <class T=
void list<T=::insert_front()

;
1

struct node <T=*t, *temp;
cout<<"Enter data into node:";
cin>>item;
temp=create_node(item);
if{(head==NULL)
head=temp;

else

{ temp->link=head;
head=temp;

H

——

case 2:Inserting end of the list

DEPARTMENT OF CSE

Page 3 of 53

head

laIt

Eg:
X
50 > 10 » 20 » 30 40 NULL
Insert | 60 RLL at the end of list.
temp

head is the pointer variable which contains address of'the first node and temp contains address of new
node to be inserted then sample code is

\.

/t:hcad;

while(t->link!=NULL)

{

1
J

t=t->link;

->link=temp;

~

After insertion the linked list is

50

A 4
)

A 4

20

A 4

30

Y

40

60

NULL

Code for insert End:-

template <class T>
void list<T>:insert_end()

1]
L

struct node<T> *t,*temp;

cout<<"Enter data into node:";
cin==n;
temp=create_node(n);
if(head==NULL)

mt n;
clse
{
J

!

J

head=temp;

t=head;

while(t->link!'=NULL)

t=t->link;
t->link=temp;

DEPARTMENT OF CSE

Page 4 of 53

case 3: Insert at a position

10 " 20

(%]
o

40

NULL

NULL
Insert 60

insert node at position 3

head is the pointer variable which contains address of the first node and temp contains address of new

node to be inserted then sample code is

c=1;

while(c<pos)

{
prev=cur;
cur=cur->link;
ct++;

}

prev->link=temp;

\temp—>link=cur;

10 ™ 20

<

40

NULL

60

Code for inserting a node at a given position:-

template <class T=
void list<T=::Insert_at pos(int pos)
{struct node<T=*cur, *prev, *temp;
int ¢=1;
cout<<"[nter data into node:";
cin>>item
temp=create node(item);
if{thead==NULL)
head=temp;

else
!
prev=cur=head;
if(pos==1)
!
t
temp->link=head;
DEPARTMENT OF CSE

Page 5 of 53

head=temp;

else

§

L
while(c<pos)
§ ct++;

[
prev=cur;
cur=cur->link;

1

{

prev-=link=temp;

temp->link=cur;

1
i

Deletions: Removing an element from the list, without destroying the integrity of the list itself.
To place an element from the list there are 3 cases :
1. Delete a node at beginning of the list

2. Delete a node at end of the list
3. Delete a node at a given position

Case 1: Delete a node at beginning of the list

\ 10 20 » 30 40 NULL

head is the pointer variable which contains address of the first node

head

sample code is
t=head;
head=head->link;
cout<<"node "<<t->data<<" Deletion is sucess";

delete(t);

head —* 20 > 30 > 40 NULL

code for deleting a node at front

template <class T>
void list<T=>::delete_front()
{
struct node<T=>*t;
if(head==NULL)
cout<<"List is Empty\n";
clse
{ t=head,

DEPARTMENT OF CSE Page 6 of 53

head=head-=link;
cout<<"node "<<t->data<<" Deletion is sucess";
delete(t);

}

Case 2. Delete a node at end of the list

head

10 20 ™ 30 40 LAEE

To delete last node , find the node using following code

/struct node<T>*cur,*prev; \ f

cur=prev=head,;

while(cur->link!=NULL)

{ prev=cur;
cur=cur->link;

H
prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";

\frcc(cur); / :
head \

10 > 20 > 30 NULL

code for deleting a node at end of the list
template <class T>
void list<T>::delete_end()

f
§

struct node<T=*cur, *prev;
cur=prev=head;
if(head==NULL)
cout=~<"List is Empty'n";
else
{ cur=prev=head;
if(head->link==NULL)

§
t

cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
head=NULL;

DEPARTMENT OF CSE Page 7 of 53

@
o

while(cur->link!=NULL)
{ prev=cur;
cur=cur-=link;

~— 0

1
i

prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);

——

}

CASE 3. Delete a node at a given position
head

N

Declete node at position 3
head is the pointer variable which contains address of the first node. Node to be deleted is node

containing value 30.
Finding node at position 3

-)

£l

» 30 > 40 | NULL

Y
[
[==}

k.

while(c<pos)
{ ct+;
prev=cur;

cur=cur->link;

1
s

o %
prcvl CIr

10 » 20 ——»| 30 > 40 NULL

cur is the node to be deleted . before deleting update links

code to update links ,)
3 prev->link=cur->link;

cout<<cur->data <<"is deleted successfully";
delete cur;

prcvi c¢r

10 * 20 //\'; 30 WANg 40 NULL

DEPARTMENT OF CSE

Page 8 of 53

Traversing the list: Assuming we are given the pointer to the head of the list, how do we get the end

of the list.

template <class T>
void list<T=>:: display()

{
1

struct node<T=*;

if(thead==NULL)
1

cout<<"List is Empty'n";

}l
e{se

t=head;

while(t!=NULL)

{ cout<<t->data=<"->";
t=t->link;

1
3

[Dynamic Implementation of list ADT

#include<iostream.h>
#include<stdlib.h>
template <class T>
struct node
3
T data;
struct node<T> *link;

[
§
template <class T>
class list

{
L

nt item;

struct node<T>*head;
public:

list();

void display();

struct node<T>*create_node(int n);
void insert_end();

void insert_front();

void Insert_at pos(int pos);
void delete_end();

void delete front();

void Delete at_pos(int pos);
void Node count();

DEPARTMENT OF CSE

Page 9 of 53

template <class T=
list<T=::list()

{
§

head=NULL;
j
template <class T=
void list<"T=:: display()

|
struct node<T=*{;
itthead==NULL)
{
cout<<"List is Empty\n";
§
else
{ t=head:;
while(t!'=NULL)
{ cout=<t->data<<"->";
t=t->link;
!
5
5

template <class T>
struct node<T=* list<T=::crcatc nodc(int n)
{struct node<T> *t,
t=new struct node<T>;
t->data=n;
t->link=NULL;
return t;

i
$

template <class T>
void list<T=:insert_end()
tstruct node<T= *{,*temp;
int n;
cout<<"Enter data into node:";
cin=>n;
temp—create_node(n);
if(head==NULL)
head=temp:;

else
{ t=head;
while(t->link!=NULL)
t=t->link;
\ t->link=temp;

DEPARTMENT OF CSE Page 10 of 53

template <class T>
void list<T=>:insert_front()

§
!

struct node <T=*t,*temp;
cout<<"Enter data into node:";
cin>>item;
temp=create node(item);
if(head==NULL)
head=temp;

clse

{ temp->link=head,
head=temp;

§

}

template <class T>

void list<"1>::delete_end()

§

1

struct node<T>*cur, *prev;
cur=prev=hcad;
if(head==NULL)

cout<<"List is Empty\n";

clse
4 cur=prev=hcad;
if{hcad->link==NULL)
¢
t
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
head=NULL;
§
else
{ while(cur->link!=NULL)
! prev=cur;
cur=cur->link;
1
J
prev-=link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
f
§

}

template <class T>
void list<T=>::delete_front()
]
1
struct node<T=>*t;
if(head==NULL)
cout<<"List is Empty'\n";
clse
{ t=hecad;
head=head->link;
cout<<<"node "<<t->data<<<" Deletion is sucess";
delete(1);

DEPARTMENT OF CSE Page 11 of 53

§

template <class T>
void list<T=::Node count()

!
struct node<{T=>%*t;
int ¢=0;
t=head;
ifthead==NULL)
]
i
cout<<"List is Empty\n";
h
else
{ while(1!=NULL)
: ct+
t=t->link;
1
f
cout<<"Node Count="<<c¢<<endl;
§
§

template <class T>
void list<T>::Inscrt_at pos(int pos)
{struct node<T=*cur, *prev, *temp;
int c=1;
cout<<"Enter data mto node:";
cin>>item
temp=create node(item);
if(thead==NULL)
head=temp;
clse
{ prev=cur=head;
if(pos==1)
{
temp->link=head;
head=temp;
§

else
{

1

while(¢c<pos)

! e
prev=cur;
cur=cur->link;

prev->link=temp;

temp->link=cur;

3
b

DEPARTMENT OF CSE

Page 12 of 53

template <class T>

void list<T>::Delete_at pos(int pos)
!

struct node<T>*cur, *prev,*temp;
int c=1;

it(head==NULL)

{
1

cout<<"List is Empty'n";

1
s

else
{ prev=cur=head;
if{pos==1)
{
head=head-=link:
cout<i<icur->data <<"is delcted sucesfully™;

delete cur;

1
§

clse
while(c<pos)
{ et
prev=cur;
cur=cur->link;

L
s

prev->link=cur->link;
cout<<cur->data <<"is deleted sucesfully";
delete cur;

int main()

!

int ncount,ch,pos;

list <int> L;
while(1)

§
1

cout<<"in ***QOperations on Linked List***"<<endl;
cout<<"‘nl.Insert node at End"<<endl;
cout<<"2_Insert node at Front"<<endl;
cout<<"3.Delete node at END"<<endl;
cout<<"4.Delete node at Front"<<endl;
cout<<"35.Inscrt at a position "<<endl;
cout<<"6.Delete at a position "<<endl;
cout=<"7.Node Count"<<endl;

cout<<"8.Display nodes "<<endl;

cout<<"9.Clear Screen "<<endl;

DEPARTMENT OF CSE

Page 13 of 53

cout<<"10.Exit "<<endl;

cout<<"Enter Your choice:";
cin>>ch;
switch(ch)

{

case 1: L.insert_end();
break;

case 2: L.insert_front();
break:

case 3:L.delete_end();
break:

case 4:L.delete front();
break;

case 5: cout<<"Enter position to insert";
Cin>>pos;
L.Insert_at_pos(pos);
break;

case 6: cout<<"Enter position to insert";
CiN>>pos;
L.Delete_at_pos(pos):
break;

casc 7: L.Node count();
break;

case 8: L.display();
break;

case 9:system("cls");
break;

casc 10:exat(0);

default:cout<<"Invalid choice";

DOUBLY LINKED LIST

A singly linked list has the disadvantage that we can only traverse it in one direction. Many
applications require searching backwards and forwards through sections of a list. A useful refinement
that can be made to the singly linked list is to create a doubly linked list. The distinction made
between the two list types is that while singly linked list have pointers going in one direction, doubly
linked list have pointer both to the next and to the previous element in the list. The main advantage of

a doubly linked list is that, they permit traversing or searching of the list in both directions.

In this linked list each node contains three fields.
a) Onec to store data
b) Remaining are self referential pointers which points to previous and next nodes in the list

prev

data next

DEPARTMENT OF CSE

Page 14 of 53

Implementation of node using structure
Method -1:

struct node

|
t

int data;
struct node *prev;
struct node * next;

Implementation of node using class
Method -2:

class node

f
1

public:
int data;
node *prev;
node * next;

NULL | 10 NULL

A
.
R
o
A 4
(5]
)

F 3

Operations on Doubly linked list:
» Insertion of a node
» Deletions of a node
#» Traversing the list

Doubly linked list ADT:

template <class T>
class dlist
{
int data;
struct dnode<T>*head;
public:
dlist()

]
i

head=NULL;
1
i)
void display();
struct dnode<T=>*create dnode(int n);
void insert_end();
void insert front();
void delete_end();
void delete front();
void dnode _count();

DEPARTMENT OF CSE Page 15 of 53

void Insert_at_pos(int pos):
void Delete_at_pos(int pos);

35

Insertions: To place an elements in the list there are 3 cases
» 1. At the beginning

. End of the list

. At a given position

(USR]

5
case l:Insert at the beginning

N,

NULL |10

head

A4
4

20 30 NULL

A

A

NULL [40 NULL

temp

head is the pointer variable which contains address of the first node and temp contains address of new
node to be inserted then sample codeis

temp->next=head;
head->prev=temp;
head=temp;

hecad

A 4
A 4
A 4

40 30 NULL

A
y
A

Code for insert front:-
template <class T>
void DLL<T>::insert_front()

¢
1

struct dnode <T=*t,*temp;

cout<<"Enter data into node:";

cin>>data;

temp=create dnode(data);

if(head==NULL)
head=temp:;

clse

{ temp->next=head; head-
=prev=temp;
head=temp;

-~

DEPARTMENT OF CSE Page 16 of 53

case 2:Inserting end of the list

head \
NULL| 10 - g 20 < > 30 [Nl
NULL| 40 NULL
temp

head is the pointer variable which contains address of the first node and temp contains address of
new node to be inserted then sample code is

t=hcad;
while(t->next!=NULL)
t=t->next;
t->next=temp,
temp->prev=t;

head \

NULL | 10 < 20

\ 4
A 4

30 NP

A

40 NULL

Code to insert a node at End:-

template <class T>
void DLL<T=:insert_end()

{

struct dnode<T= *{,*temp;
nt n;
cout<<"Enter data into dnode:";
cin=>n;
temp=create dnode(n);
if(hcad==NULL)
head=temp;
clse
{ t=head;
while(t-=next!=NULL)
t=t->next;

DEPARTMENT OF CSE Page 17 of 53

t->next=temp;
temp->prev=L,

case 3:Inserting at a give position

Y

A

head \
NULL | 10
temp .

A 4

A

40

insert 40 at position 2

head is the pointer variable which contains address of the first node and temp contains address of new

node to be inserted then sample code 1s

ﬁhi]e(counﬁpos)

{
T

}

c

o

count+-+;
pr=ct;
cr=cr->next;

pr->next=temp,
temp->prev=pr;
temp->next=cr;

r->prev=temp;

N

NULL

A 4

A

head \ pr cr
\/,
NULL| 10 «— A\ 20
\ / N\ <
W
sULh l4p NULL
temp

NULL

DEPARTMENT OF CSE

Page 18 of 53

Code to insert a node at a position

template <class T>

void dlist<T=::Insert_at _pos(int pos)

{

struct dnode<T=*cr,*pr,*temp;

int count=1;

cout<<"Enter data into dnode:™;

cin>>data;

temp=create_dnode(data);

display();

if(head==NULL)
{//when list is empty
head=temp;

i
§

/linserting at pos=|
temp->next=hcad;
head=temp;

while(count<pos)
{ countt+;
pr=cr;

cr=cr->next;
pr-=nex(=temp;
temp-=prev=pr;
temp-=next=cr,
cr-=prev=temp,

else
{ pr=cr=hcad;
if{pos=
!
|
clse
{
§

Deletions: Removing an element from the list, without destroying the integrity of the list itself.

To place an element from the list there are 3 cases :

1. Delete a node at beginning of the list
2. Delete a node at end of the list
3. Delete a node at a given position

Case 1: Delete a node at beginning of the list

head
NULL | 10 P > 20) 30 |wu
DEPARTMENT OF CSE Page 19 of 53

head is the pointer variable which contains address of the first node

sample code is

t=head;

head=head->next;

head->prev=NULL,;

cout<<"dnode "<<t->data<<" Deletion is sucess";
delete(t);

head

A 4

NULL\L>(/ "| NULL |20 « 30 NULL

A

code for deleting a node at front

template <class T=
void dlist<T>:: delete_front()
{struct dnode<T=>%*,
if(head==NULL)
cout<<"List i1s Empty\n";

clse
1 t=head;

head=head->next;

head-=prev=NULL;

cout<<"dnode "<<t->data<<" Deletion is sucess";
} delete(t);

}

Case 2. Delete a node at end of the list
To deleted the last node find the last node. find the node using following code

/struct dnode<T>*pr,*cr; \ :

pr=cr=head;
while(cr->next!=NULL)
{ pr=cr;
cr=cr--next,
}

pr->next=NULL;
cout<<"dnode "<<cr->data<<" Deletion is sucess";

Qelete(cr); / .

DEPARTMENT OF CSE Page 20 of 53

head / /

NULL| 10 - g 20 NULL [X %% NULL
code for deleting a node at end of the list
template <class T>
void dlist<T>::delete_end()
§
1
struct dnode<T=>*pr,*cr;
pr=cr=head,;
if(head==NULL)
cout<<"List is Empty\n";
clse
{ cr=pr=hcad;
if(head->next==NULL)
1}
@
cout<<"dnode "<<cr->data<<" Decletion is sucess";
delete(er);
head=NULL;
§
else
{ while(cr->next!=NULL)
{ pr=cr;
cr=cr->next;
]
pr->next=NULL;
cout<<"dnode "<<cr->data<<" Deletion 1s sucess";
delete(cr);
§
§
§
CASE 3. Delete a node at a given position
head
NULL 10 30 > 20 NULL

Delete node at position 2

head is the pointer variable which contains address of the first node. Node to be deleted is node
containing value 30.

Finding node at position 2.

DEPARTMENT OF CSE

Page 21 of 53

/while(count<pos)
{ pr=cr;
cr=cr->next;

count++;

1
f

pr->next=cr->next;
Qr->next->pre\;pr;

head

}v/ 30

NULL 10

AN

pr cr

20

NULL

code for deleting a node at a position

template <class T>
void dlist<T=>::Delete_at_pos(int pos)
{
struet dnode<"T>*cr, *pr,*temp;
int count=1;
display();
if{thcad==NULL)

cout<<"List is Empty\n";

i
!

clse
{ pr=cr=hcad;
if(pos=—1)
]
[l
head=head->next;
head->prev=NULL;

cout<<cr->data <<"is deleted sucesfully";

delete cr;

§

else

1
while(count<pos)
1 count++;

pr=cr;

} cr=cr->next;
pr->next=cr->next;
cr->next->prev=pr;
cout<<cr->data <<"is deleted sucesfully";
delete cr;

§

DEPARTMENT OF CSE

Page 22 of 53

[Dynamic Implementation of Doubly linked list ADT

#include<iostream.h>
template <class T=>
struct dnode

.

T data;

struct dnode<T> *prev;
struct dnode<T=> *next;
b
template <class T>
C(]ass dlist

!

int data:

struct dnode<T>*head;
public:

dlist();

struct dnode<T=>*crecate_dnode(int n);
void insert_front();
void insert_end();
void Insert at pos(int pos);
void deletefront();
void delete_end();
void Delete at pos(int pos);
void dnode count();
void display();
15

template <class T>
dlist<T=::dlist()

f
t

head=NULL;

1
f

template <class T>
struct dnode<T=>*dlist<T=::create_dnode(int n)
|
struct dnode<T> *t;
t=new struct dnode<T=;
t-=data=n;
t-=next=NULL;
t-=prev=NULL;
return t;

[
§

template <class T=>

void dlist<T>::insert front()
]

1

struct dnode <T=%*t, *temp;

cout<<"Enter data into dnode:";

DEPARTMENT OF CSE

Page 23 of 53

cin>>data;

temp=create_dnode(data);

if(head==NULL)
head=temp;

else

{ temp->next=head; head-
>prev=temp;
head=temp;

[}
f

i
s

template <class T>
void dlist<T=>:insert_end()

!

struct dnode<T> *t,*temp;
int n;
cout<<"Enter data into dnode:";
cin>>n;
temp=create_dnode(n);
if(hcad==NULL)
head=temp;
clse
{ t=head;
while(t->next!=NULL)
=t->ncext;
=>next=temp;
temp->prev=L;

template <class T>
void dlist<T>::Insert_al pos(int pos)

f
1

struct dnode<<T=*cr,*pr,*temp;

int count=1;
cout<<"Enter data into dnode:";
cin>>data;
temp=create_dnode(data);
display();
ifthead==NULL)
{//when list is empty

head=temp:;

}
clse
{ pr=cr=head;
if(pos=—1)
! //inserting at pos=1
temp->next=head;
head=temp;
i
clse
DEPARTMENT OF CSE Page 24 of 53

while(count<pos)
{ count++;
pr=cr;

} cr—Ccr-=next,
pr-=next=temp,
temp->prev=pr,
temp->next=cr;
cr-=prev=temp,

}

template <class T=
void dlist<T>:: delete front()
{struct dnode<"T=%*t;
if(hcad==NULL)
cout<<"List i1s Empty\n";

clse
{ display();
t=head;
head=head->next;
head->prev=NULL;
cout<<"dnode "<<t->data<<" Deletion is sucess";
delete(t);
}

t
13

template <class T=
void dlist<T>::delete_end()

f
l

struct dnode<T=*pr,*cr;
pr=cr=head,
if(hcad==NULL)
cout<<"List is Empty\n";
else
{ cr—pr—head;
if{head-=next==NULL)

i
t

cout<<"dnode "<<cr->data<<<" Deletion is sucess";
delete(cr);
head=NULL;

else
{ while(cr->next!=NULL)
{ pr=cr;
cr=cr->next;
h
pr->next=NULL;
cout<<"dnode "<<cr->data<<" Decletion 1s sucess";
delete(cr);

DEPARTMENT OF CSE

Page 25 of 53

H

i
§

template <class T>
void dlist<T=::Delete_at_pos(int pos)
{
struct dnode<T>*cr,*pr,*temp;
int count=1;
display();
if{head==NULL)

J
3

cout<<_"List is Empty\n";

1
s

clse

{ pr—cr—head;
if(pos==1)
1

head=hecad->next;

head->prev=NULL;

cout<<cr->data <<"is dcleted sucesfully";

delete cr;
}
?lsc

while(count<pos)

{ count++;
pr=cr;
cr=cr->next;

s

pr->next=cr->next;

cr->next->prev=pr;

cout<<ccr->data <<"is deleted sucesfully";

delete cr;
§
§

1

§

template <class T>

void dlist<T=>::dnode_count()

!

struct dnode<T>*t;
int count=0;
display();
t=head;
ifthead==NULL)
cout<<"List is Empty\n";

else
{ while(t!=NULL)
] count++;
t=t->next;
§
cout<<"node count is "<<count;
DEPARTMENT OF CSE

Page 26 of 53

_ §
|

template <class T>
void dlist<T=:display()

f
1

struct dnode<T>*t;
ifthead==NULL)
]

cout<<"List is Empty'n";

clse
{ cout<<"Nodes in the linked list are ...\n";
t=head;
while(t!=NULL)
{ cout<<t—>data<<”<7>nl
t=t->next;
1
s
§
!
J
int main()
{
int ch.pos;
dlist <int> DL;

while(1)
)

L

cout<<"n ***QOperations on Doubly List***"<<endl;

cout<<"‘nl.Insert dnode at End"<<endl;
cout=<""2.Insert dnodc at Front"<<endl;
cout<<"3 .Delete dnode at END"<<tendl;
cout<<"4 Delete dnode at Front"<<endl;
cout<<"5.Display nodes "<<endl;
cout<<"6.Count Nodes"<<endl;
cout<<""7.Insert at a position "<<endl;
cout<<"8.Delete at a position "<<endl;
cout=<"9 Exit "<<endl;
cout<<"10.Clear Screen "<<endl;
cout=<"Enter Your choice:";

cin>>ch;

switch(ch)

f
L

case 1: DL.insert end();
break;
case 2: DL.nsert_front();
break;
case 3:DL.delete_end();
break;
case 4:DL.delete_front();
break;
case 5://display contents
DL.display();
break;

DEPARTMENT OF CSE

Page 27 of 53

case 6: DL.dnode count();
break;

case 7: cout<<"Enter position to insert";
CIN>>Ppos;
DL.Insert_at pos(pos);
break;

case & cout=<""Enter position to Delete";
cin>>pos;
DL.Delete at pos(pos);
break;

case 9:exit(0);

case [0:system("cls™);
break:

default:cout<<"Invalid choice";

CIRCULARLY LINKED LIST
A circularly linked list, or simply circular list, is a linked list in which the last node is always points
to the first node. This type of list can be build just by replacing the NULL pointer at the end of the list

with a pointer which points to the first node. There is no first or last node in the circular list.

Advantages:

» Any nodec can be traversed starting from any other node in the list.

» Thereis noneed of NULL pointer to signal the end of the list and hence, all pointers contain
valid addresscs.
Incontrast to singly linked list, deletion operation in circular list is simplified as the search for

the previous node of an element to be deleted can be started from that item itself.

head

H

[Dynamic Implementation of Circular linked list ADT

#include<iostream.h=

#include<stdlib.h>
template <class T>
struct cnode

!

T data;

struct cnode<T= *link;

[
fo

/{Code fot circular linked List ADT

template <class T=

DEPARTMENT OF CSE

Page 28 of 53

class clist
!
int data;
struct cnode<T>*head;
public:
clist();
struct cnode<T>* create_cnode(int n);
void display();
void insert_end();
void insert front();
void delete_end();
void delete front();
void ecnode_count();

b
/feode for defaut constructor
template <class T=>
clist<T=>::clist()
]
1
head=NULL;

|

/fcode to display elements in the list
template <class T>
void clist<T>::display()

f
1

struct cnode<T>*t;
if(head==NULL)

cout<<"clist is Empty'n";

else
f t=head;
if{t->link==hcad)
cout<<t->data<<"->";
else
f
Y

cout<<t->data<<<"->";

t=t->=link;

while(t!=head)

'
cout<<t->data<<"-=",
t=t->link;

b

§

}

//Code to create node
template <class T>
struct cnode<"T=* clist="T>::creale_cnode(int n)

DEPARTMENT OF CSE

Page 29 of 53

)

it

struct cnode<T=> *t;
t=new struct cnode<T=>;
t->data=n;
t->link=NULL:

return t;

!
¥

/{Code to insert node at the end
template <class T>
void clist<T>::insert_end()

!

struct cnode<T>*t;
struct cnode<T>*temp;

int n;
cout<<"Enter data into cnode:";
cin=>n;
temp=create cnode(n);
if(thead==NULL)
!
head=temp;
temp->link=temp;
§
clse
3
t=hcad;
if(t-=link==hcad)// list containing only onc¢ node
{
t->link=temp;
temp->link=t;
s
else
i
while(t->link!=head)
{
t=t->link;
1
§
t->link=temp;
temp->link=head;
¥
}
cout<<"Node inerted"<<endl;
}

//Code to insert node at front

template <class T>

void clist<T>:insert_front()

d

struct cnode <1T=>%*t;

struct cnode<T=*temp;
cout<<"Enter data into cnode:";
cin>>data;

DEPARTMENT OF CSE

Page 30 of 53

temp=create_cnode(data);
ifthecad==NULL)

f
l

head=temp;
temp->link=temp;

}
clse
{
t=head;
if(t->link==head)
{
t->link=temp;
temp-=link=t;
b
else
{
//code to find last node
while(t->link!=hcad)
!
L
t=t->link;
1
§
t->link=temp; //linking last and first node
temp->link=head;
head=temp;
§
1

]

cout<<"Node inserted ‘n";

1
|

//Code to delete node at end
template <class T>
void clist<T=:delete_end()

§
t

struct cnode<T>*cur,*prev;
cur=prev=head;
if(head==NULL)
cout==<""clist is Empty\n";
clse
{ cur=prev—head;
ifcur->link=—=head)

{
t

cout<<"cnode "<<cur->data<<" Deletion is sucess";
free(cur);
head=NULL;

}

else

{ while(cur->link!=head)

i prev=cur;
cur=cur->link;

1
s

Department of CSE Page 31 of 53

/Iprev=cur;

//cur=cur->link;

prev->link=hcad;//points to head

cout<<"cnode "<<cur->data<<" Deletion is sucess";
free(cur);

}

1
s

/fCode to delete node at front
template <class T>
void clist<T=:delete_front()

{
i

struct cnode<T>*t, *temp;
ifthead==NULL)
cout<<"circular list is Empty\n";
clse
{ t=head;
/fhead=head->link;
if(t-=link==hecad)
i
head=NULL;
cout<<"cnode "<<t->data<<" Deletion is sucess";
delete(t);

L
S

clse

(
L

/fcode to find last node
while(t->link!=head)

{
§

t=t->link;

1
J

temp=head;

t->link=head->link; //linking last and first node
cout<<"cnode "<<temp->data<<" Deletion is sucess";
head=head-=>link;
delete(temp);

t
s

}
i

//Code to count nodes in the circular linked list
template <class T=
void clist<T=>::cnode_count()
1
struct cnode<T=%*t;
int ¢=0;
t=head;
if(head==NULL)

f
l

cout<<"circular list is Empty\n";

L
J

DEPARTMENT OF CSE

Page 32 of 53

UNIT -1

clse

{ t=t->link;
ctt;
while(t!=head)
! et

t=t->link;
i
§
cout=<"Node Count="<<¢;

)

int main()

!

int ch,pos;

clist <int> L;
while(1)

f
l

cout<<"'n ***Qperations on Circular Linked clist***"<<endl;
cout<<""“nl.Insert cnode at End"<<endl;
cout<<"2.Insert Cnode at Front"<<endl;
cout<<"3.Delete Cnode at END"<<cndl;
cout<<"4.Delete Cnode at Front"<<endl;
cout<<"5.Display Nodes "<<endl;
cout<<"6.Cnode Count"<<endl;
cout<<"7.Exit "<<endl;

cout<<"8.Clear Screen "<<endl;
cout<<"Enter Your choice:";

cin>>ch;

switch(ch)

f
L

case 1: L.insert_end();
break:

case 2: L.insert front();
break;

case 3:L.delete end();
break;

case 4:L.delete_front();
break:

case S5://display contents
L.display();
break;

case 6: L.cnode_count();
break;

case 7:exit(0);

case 8:system("cls");
break:

default:cout<<"Invalid choice";

DEPARTMENT OF CSE

Page 33 of 53

Stack: Stack ADT, array and linked list implementation, Applications- expression conversion and
evaluation. Queue: Types of Queue: Simple Queue, Circular Queue, Queue ADT- array and linked
list implementation. Priority Queue, heaps.

STACK ADT:- A Stack is a linear data structure where insertion and deletion of items takes place
at one¢ end called top of the stack. A Stack is defined as a data structure which operates on a last-in
first-out basis. So it is also is referred as Last-inFirst-out(LIFO).

Stack uses a single index or pointer to keep track of the information in the stack. The basic
operations associated with the stack are:

a) push(insert) an item onto the stack.

b) pop(remove) an item from the stack.

The general terminology associated with the stack is as follows:

A stack pointer keeps track of the current position on the stack. When an clement 1s placed
on the stack, it is said to be pushed on the stack. When an object is removed from the stack, it is
said to be popped off the stack. Two additional terms almost always used with stacks are
overflow, which occurs when we try to push more information on a stack that it can hold, and
underflow, which occurs when we try to pop an item off a stack which is empty.

Pushing items onto the stack:

— LS Push Y
' 4 Push v ""5'"
[13 Push y 4] 4
12 " Push y 3] 3] 3
PRy [2] 2] 2] 12]
1] 1 1] [1] El

Assume that the array elements begin at 0 (because the array subscript starts from 0)

and the maximum elements that can be placed in stack is max. The stack pointer, top, is considered to
be pointing to the top element of the stack. A push operation thus involves adjusting the stack pointer
to point to next free slot and then copying data into that slot of the stack. Initially the top is initialized
to-1.

/fcade to push an element on to stack;
template<class T=
void stack<"T=::push()

{
if(top==max-1)
cout<<"Stack Overflow...\n";
c{:lsc
cout<<"Enter an clement to be pushed:";
top+-+;
cin>>data;
stk[top]=data;
cout=<"Pushed Sucesfully....\n";
}
}

DEPARTMENT OF CSE Page 34 of 53

Popping an element from stack:
Toremove an item, first extract the data from top position in the stack and then decrement the
stack pointer, top.

/fcode to remove an element from stack
template<class T=

void stack<T>::pop()

{
ifitop==-1)
cout<<"Stack is Underflow";
else
{
data=stk|top];
top--;
cout<<data<<"is poped Succsfully\n";
b
}
[Static implementation of Stack ADT }

#include<stdlib.h=>
#include<iostream.h>
#define max 4
template<class T=
class stack

{

1 .
private:
int top;
T stk[max],data;
public:
stack();
void push();
void pop();
void display();
1.
i

template<iclass T=>
stack<T=>::stack()

f
1

top=-1;

DEPARTMENT OF CSE Page 35 of 53

y
//code to push an element on to stack;
template<class T>
void stack<T=>::push()
1
if(top=—max-1)
cout<<"Stack Overflow...\n";

else
i
cout<<"Enter an element to be pushed:";
top++;
cin>>data;
stk[top]=data;
cout<<"Pushed Sucestully....\n";
§

1
§

//code to remove an element from stack
template<class T>

void stack<T>::pop()

1
if(top=—-1)
cout<<"Stack is Undertlow";
clse
data=stk|top];
top--;
cout<<data<<"is poped Sucesfully\n";
h

1

§

/lcode to display stack clements
template<class T>

void stack<T>::display()

f
L

if{top==-1)
cout<<"Stack Under Flow";
else
{ ;) Stack are....\n"™;
FOHR R isents fn the
{
cout<<<<stk[i]<<"\n";
j
¥
}
int main()
!
int choice;
stack <int=st;
while(1)

f
L

cout<<"\n*#**¥Menu for Stack operations#*#¥n";
cout<<"1.PUSH\n2.POP\n3.DISPLAY'n4.EXIT'\n";

DEPARTMENT OF CSE

Page 36 of 53

cout<<"Enter Choice:";
cin>>choice;
switch(choice)

]
L

case 1: st.push();
break:
case 2: st.pop();
break;
case 3: st.display();
break;
case 4: exit(0);

default:cout<<"Invalid choice...Try again...\n

}

output:

wwE*Menu for Stack operations ™% %
1.PUSH

2.POP
3.DISPLAY

4. EXIT

Enter Choice:1

Enter an clement to be pushed: 1 1
Pushed Sucesfully....

##kEEMenu for Stack operations®###*

1.PUSH
2.POP

3.DISPLAY

4 EXIT

Enter Choice:1

Enter an element to be pushed:22
Pushed Sucesfully....

*HEE*Menu for Stack operations®#*%*
1.PUSH

2.POP

3.DISPLAY

4. EXIT

Enter Choice:|

Enter an element to be pushed:44
Pushed Sucesfully....

wEExEMenu for Stack operations®*##*
1.PUSH

2.POP

3.DISPLAY

4. EXIT

Enter Choice:1

Enter Choice:1

Enter an item to be pushed:55

Pushed Sucesfully....

",

DEPARTMENT OF CSE

Page 37 of 53

FrxEEMenu for Stack operations#
1.PUSH

2.POP

3.DISPLAY

4. EXIT

Enter Choice: |

Stack Overflow...

FadkEMenu for Stack operations®##*

1.PUSH
2.POP

3.DISPLAY
4. EXIT

Enter Choice:2
55 is poped Sucesfully....

*EEEEMenu for Stack operations %% *

1.PUSH
2.POP

3.DISPLAY

4 EXIT

Enter Choice:3

Elements in the Stack are....

44
22

11

wickEMenu for Stack operations ™ ##%%
1.PUSH

2.POP

3.DISPLAY

4. EXIT

Enter Choice:4

[Dynamic implementation of Stack ADT]ﬁ

#include<iostream.h>
template <class T>

struct node

i
L

T data;

struct node<T> *link;
1

’ .

template <class 1>

class stack

int data;
struct node<T=>*top;

DEPARTMENT OF CSE Page 38 of 53

public:
stack()

{
§

H

void display();
void push();
void pop();

top=NULL;

1.
]
template <class T=

void stack<T>::display()

!
struct node<T=*t;
if(top=—NULL)
1
cout<<"stack is Empty\n";
}
clse
{ t=top;
while(t!=NULL)
{ cout=<"|"<<t->data<<"|"<<endl;
t=t->>link;
|
§
§

template <class T>
void stack<T=>::push()

]
[

struct node <T>*t, *temp;
cout<<"Enter data into node:";
cin>>data;
temp=new struct node<T>;
temp->data=data;
temp->link=NULL;
if{top==NULL)

top=temp;

else
1 temp->link=top;
} top=temp:

template <class T>
void stack<T=>::pop()
1
struct node<T>*t;
if(top==NULL)
cout<<"stack is Empty\n";

DEPARTMENT OF CSE

Page 39 of 53

else

1 (=top;
top=top->link;
cout<<'"node "<<t->data<<" Deletion is sucess";
delete(t);

int main()

1}
t

int ch;
stack <int> st
while(1)
1
cout<<"\n ***perations on Dynamic stack™**"<<endl;
cout<=<"\nl.PUSH"<<endl;
cout<<"2.POP"<<endl;
cout<<"3. Display "<<endl,
cout<<"4 Exit "<<endl;
cout<<"Enter Your choice:";
cin>>ch;
switch(ch)
d
casc 1: st.push();
break;
case 2: st.pop();
break:
case 3:st.display();;
break;
case 4:exit(0);
default:cout<<"Invalid choice™;

Applications of Stack:

1. Stacks are used in conversion of infix to postfix expression.
2. Stacks are also used in evaluation of postfix expression.

3. Stacks are used to implement recursive procedures.

4. Stacks are used in compilers.

5. Reverse String

An arithmetic expression can be written in three different but equivalent notations, i.e., without
changing the essence or output of an expression. These notations are—

I. Infix Notation

2. Prefix (Polish) Notation

3. Postlix (Reverse-Polish) Notation

DEPARTMENT OF CSE Page 40 of 53

Expression | Example

Note

Infix a+b Operator Between Operands
Prefix +ab Operator before Operands
Postfix ab+ Operator after Operands

Conversion of Infix Expressions to Prefix and Postfix

Infix Expression Prefix Expression Postfix Expression
A+B*C+D ++A*BCD ABC*+D+
(A+B) *(C+D) HABTED AB+EeD+*
A*B+C*D +*AB*CD AB*CD*+
A+B+C+D +++ ABCD AB+C+D+
Convert following infix expression to prefix and postfix
(A+B)*C-(D-E)*(F+G)
(A+B)*C-(D-E)"(F+G)
((A+B)*C)-((D-E) " (F+G)))
\
Prefix Postfix
‘+ABC*-DE+FG AB+C "DE-FG+"*

The Tower of Hanoi (also called the Tower of Brahma or Lucas' Tower,[1] and sometimes
pluralized) is a mathematical game or puzzle. It consists of three rods, and a number of disks of
different sizes which can slide onto any rod. The puzzle starts with the disks in a neat stack in

ascending order of size on one rod, the smallest at the top, thus making a conical shape.

S DEPARTMENT OF CSE

Page 41 of 53

The objective of the puzzle is to move the entire stack to another rod, obeying the following simple
rules:

1. Only one disk can be moved at a time.

2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another
stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3. No disk may be placed on top of a smaller disk.

3 3K
(1) I

) (52 4

QUEUE ADT

A queue is an ordered collection of data such that the data is inserted at one end and deleted from
another end. The key difference when compared stacks is that in a queue the information stored is
pracessed first-in first-out or FIFO. In other words the information receive from a queue comes in the
same order that 1t was placed on the queue.

Insertion

/

Deletion

Front end Rear end

Representing a Queue:
One of the most common way to implement a queue is using array. An easy way to do so is to
define anarray Queue, and two additional variables front and rear. The rules for manipulating these
variables are
simple:

» LEach time information is added to the queue, increment rear.

» Each time information is taken from the queue, increment front.

» Whenever front >rear or front=rear=-1 the queue is empty.
Array implementation of a Queue do have drawbacks. The maximum queue size has to be set at

compile time, rather than at run time. Space can be wasted, if we do not use the full capacity of the
array.

DEPARTMENT OF CSE Page 42 of 53

Operations on Queue:

A queue have two basic operations:

a)adding new item to the queue

b) removing items from queue.

The operation of adding new item on the queue occurs only at one end of the queue called the rear or
back.

The operation of removing items of the queue occurs at the other end called the front.

For insertion and deletion of an element from a queue, the array elements begin at 0 and the
maximum elements of the array is maxSize. The variable front will hold the index of the item that is
considered the front of the queue, while the rear variable will hold the index of the last item in the
queue.

Assume that initially the front and rear variables are initialized to-1. Like stacks, underflow
and overflow conditions are to be checked before operations in a queue.

Queue empty oF

if((front>rear)|/front= =-1)

cout<”Queue is empty”;

Quecue Full or overflow condition is

if((rear==max)
cout<”Queue is full”;

[Static implementation of Queue ADT]

#include<stdlib.h>
#include<iostream.h>
#define max 4
template <class T>

class queue

]
L

T g[max],item;

int front,rear;
public; queue();

void insert g();

void delete q();

voiddisplay q();
b
template <class T=
queuc<T=::qucue()

f
L

front=recar=-1;
f
/feode to insert an item into queue;
template <class T>
void queue<T= ::insert_q()

DEPARTMENT OF CSE Page 43 of 53

if{ front>rear)
front=rear=-1;
if(rear==max-1)
cout<<"queue Overflow...\n";
else
‘
if(front==-1)
front=0;
rear++;
cout<<"Enter an item to be inserted:";
cin>>iten;
q[rear|=item;
cout<<""inserted Sucesfully..into queue..\n";

}

1
S

template <class T>
void queue<T=::delete_q()

]
i

ifi (front==-1&&rcar==-1)||front>rear)

]
L

front=rear=-1;
cout<<"queue is Empty .. '\n";

}

else

§
i

item=q|[front];
front++;
cout=<item<<" is deleted Sucesfully ...\n";

1
|

i
!

template <class T=
void queue<T=::display_q()

|
L

if((front==-1&&rear==-1)|[front>rear)
'

front=rear=-1;

cout<<"queue is Empty .. 'n";

b

else
f

il

for(int i=front;i<=rear;i++)
Ne<gli]=<"

cout<=<t

o,
H

L
y

int main{)

!

int choice;

queue<int> q;
while(1)

|
I

cout<<<"\n\n***F*¥*Menu for operations on QUEUE##*##\n\n";
cout<<"1.INSERT'n2.DELETEW3.DISPLAY\n4.EXIT\n";

DEPARTMENT OF CSE

Page 44 of 53

cout<<"Enter Choice:";
cin>>choice;

switch(choice)

f
i

case |: g.insert_q();
break;
case 2: q.delete q();
break;
case 3: cout<<"Elements in the queue are... \n";
q.display q();
break;
casc 4: exit(0);

default: cout<<"Invalid choice... Tty again...\n";

Dynamic implementation of Queue ADT

ftinclude<stdlib.h>
#include<iostream.h>
template <class T>
struct node

{
1

T data;
struct node<T=>*next;
b
template <class T>
class queue

f
!

private:
T ttem;
node<T> *front,*rear:
public:
queue();
void insert q();
void delete q();
voiddisplay _q();
1 -
[}
template <class T>
queue<T>::queue()

f
l

front=rear=NULL;
!
/fcode to insert an item into queuc;
template <class T>
void queue<T=::insert q()
!
node<T>%p;
cout<<"Enter an element to be inserted:";

DEPARTMENT OF CSE

Page 45 of 53

cin=>item;
p=new node<T>;
p->data=item;
p->next=NULL;
if{ front==NULL)

[
1

rear=front=p;

1
1]

else
S
rear->next=p;
rear=p;
cout<<"inlnserted into Queue Sucestully...\n";

L
J

/fcode to delete an elementfrom queue
template <class T=
void queue<T=:delete_q()

]
t

node<T>%*t;
if{ front==NULL)
cout<<"‘nQueue is Underflow™;
else

i
1

item=tront->data;

t=front;

front=front->next;

cout<=<"‘n"<<item<<" is deleted from Queue...\n";

1
]
delete(t);

1
'

/feode to display elements in queue
template <class T=
void queue<T=::display_q()

]
L

node<T=*t;
if(front==NULL)
cout<<"‘nQueue Under Flow";
else

§
1

cout<<"inElements in theQueue are... \n";
t=front;
while(t!=NULL)

f
t

cout<<"|"<<t->data<<"|<-";
t=t->next;

L
f

int main()

i

int choicc;
queue<int>ql;

DEPARTMENT OF CSE Page 46 of 53

while(1)

1]
X

cout<<"n'\n***Menu for operations on Queue***\n\n";
cout<<"[.Insert'\n2.Delete'\n3.DISPLAY \n4. EXIT\n";
cout<<"Enter Choice:";

cin>>choice;

switch(choice)

§
i

case |:gl.insert q();

break:
case 2:ql.delete_q();

break;
case 3: ql.display_q():

break;

casc 4: exit(0);
default: cout<<"Invalid choice... Try again...\n";

Application of Queue:

Qucuc, as the name suggests is used whenever we need to have any group of objects inan order in
which the first one coming in, also gets out first while the others wait for there turn, like in the
following scenarios :

l. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. Inreal life, Call Center phone systems will use Qucues, to hold people calling them in an order,
until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts arc handled in the same order as they
arrive, First come first served.

CIRCULAR QUEUE
Once the queue gets filled up, no more elements can be added to it even if any element is removed
from it consequently. This is because during deletion, rear pointer is not adjusted.

Insertion 1s not possible
since rear pomts to last element of array

11 55

'

Empty locations
Front Rear

When the queue contains very few items and the rear pointer points to last element. i.c.
rear—maxSize-1, we cannot insert any more items into queue because the overflow condition satisfies.
That means a lot of space 1s wasted

Frequent reshuffling of elements is time consuming. One solution to this is arranging all
clements in a circular fashion. Such structures are often referred to as Circular Queues.

DEPARTMENT OF CSE Page 47 of 53

A circular queue is a queue in which all locations are treated as circular such that the first
location CQJO] follows the last location CQ[max-1].

Circular Queue empty or underflow condition is

cout<<"Queue is empty";]

{ if(front==-1)

Circular Queue Full or overflow condition is

if(front==(rear+1)%max)

{
i

cout<<"Circular Queue is full\n";

Example: Consider the following circular queue with N = 5.

1. Initially, Rear = 0, Front = 0. 4. Insert 20, Rear = 3, Front = 0.
) '['k & Fronl 4 =3
|) -
R - /s) / X' * /. Rear
2. Insert 10, Rear = 1, Front = 1. 5. Insert 70, Rear = 4, Front = 1.
Rear s '—“’_': oL e
F:):‘.l 7 56 1_‘ RN i ‘“T ‘
e~ 7:,\ l‘T"".j‘ !v‘ (‘
3. Insert 50, Rear = 2, Front= 1. 6. Delete front, Rear = 4, Front = 2.
Frant | 13 Rear ,v \r . : Front
f { T | | X»\T:‘ \:— :I
= Rear ¢

Insertion into a Circular Queue:
Algorithm CQueuelnsertion(Q,maxSize,Front,Rear,item)
Step I: [T Rear = maxSize-1 then
Rear =0
else
Recar=Rear+]
Step 2: If Front = Rear then
print “Queue Overflow™
Return
Step 3: Q[Rear] = item

DEPARTMENT OF CSE

Page 48 of 53

Step 4: [T Front = 0 then
Front =1
Step 5: Return

Deletion from Circular Queue:

Algorithm CQueueDeletion(Q,maxSize.Front,Rear,item)
Step 1: If Front = 0 then
print “Queue Underflow”

Return,
Step 2: K=Q[Front]

Step 3: If Front = Rear then

begin
Front = -1
Rear = -1

end

clse

If Front = maxSize-1 then
Front =0

else

Front = Front + 1
Step 4: Return K

Static implementation of Circular Queue ADT

#include<iostream.h>
#define max 4
template <class T=

class CircularQ

f
1

T cqlmax];

int front,rear;
public:

CircularQ();

void msertQ();

void deleteQ();

void displayQ();

1-
!-

lémplate <class T>
CircularQ<T=::CircularQ()

]
1

front=rear=-1;
i
]
template <class T>
void CircularQ<T=>:: insert)()

y
1

int num;
if{ front==(rear+)% max)

{
L

cout<<"Circular Queue is full'n";

1
§

DEPARTMENT OF CSE

Page 49 of 53

else

cout<<"Enter an element";
cin>>num;
if(front==-1)

rear=front=0;
else

rear=(rear+1)%max;
cq[rear]=num;

cout<<num <<" is inserted ...";

y

1
S

template <class T=
void CircularQ=T=::deleteQ()

f
t

int num;
if(front==-1)
cout<<"Queue is empty";

else
{
num=cq|[front];
cout<<"Decleted item is "<< num;
if(front==rcar)
front=rcar=-1;
clse
front=(front+1)%max;
}

i
!

template <class T=
void CircularQ<T=::displayQ()
3
nt i;
if(front==-1)
cout<<"Queue is empty";

else
cout<<"Queue elementsare'n";
for(i=front;i<=rear;i++)
cout<<cq[i]<<"u";
|
if(front>rear)

[
L

for(i=front;i<max;i++)
C011t<<cq[i]\f‘(n‘-}tu;

for(1=0;1<=rear;1++)
COL”-\((‘Cq[i-|<<"'“:.[";

1
S

int main()

J
1

CircularQ<int> obj;
int choice;
while(1)

i

{ cout<<"n**#* Circular Queue Operations***\n";

DEPARTMENT OF CSE

Page 50 of 53

cout<<"nl.insert Element into CircularQ";
cout<<"n2.Delete Element from CircularQ";
cout<<"n3.Display Elements in CircularQ";
cout<=<"n4.Exit ";
cout<<"‘nEnter Choice:";
cin>>choice;
switch(choice)
{ case |: obj.insertQ();
break:
case 2: obj.deleteQ();
break;
case 3: obj.displayQ();
break;
case 4: exit(0);

DEPARTMENT OF CSE Page 51 of 53

Priority Queue
DEFINITION:
A priority queuc is a collection of zero or more clements. Each clement has a priority or value.
Unlike the queues, which are FIFO structures, the order of deleting from a priority queue is determined by the
element priority.
Elements are removed/deleted cither in increasing or decreasing order of priority rather than in the order in
which they arrived in the queue.
There are two types of priority queues:
Min priority queue
] Max priority queue

Min priority queue: Collection of clements in which the items can be inserted arbitrarily, but only smallest clement
can be removed.

Max priority queue: Collection of elements in which insertion of items can be in any order but only largest element
can be removed.

In priority queue, the elements are arranged in any order and out of which only the smallest or largest element
allowed to delete each time.

The implementation of priority queue can be done using arrays or linked list. The data structure heap is used
to implement the priority queue effectively.
APPLICATIONS:

I. The typical example of priority queue is scheduling the jobs in operating system. Typically OS allocates
priority to jobs. The jobs are placed in the queue and position of the job in priority quecue determines their
priority. In OS there are 3 jobs- real time jobs, foreground jobs and background jobs. The OS always
schedules the real time jobs first. If there is no real time jobs pending then it schedules foreground jobs. Lastly
if no real time and foreground jobs are pending then OS schedules the background jobs.

2. In network communication, the manage limited bandwidth for transmission the priority queue is used.

3. Insimulation modeling to manage the discrete events the priority queue is used.

Various operations that can be performed on priority queue are-

. Find an element

2. Insert a new clement

3. Remove or delete an element

The abstract data type specification for a max priority queuc is given below. The specification for a min priority
queue is the same as ordinary queue except while deletion, find and remove the element with minimum priority

ABSTRACT DATA TYPE(ADT):

Abstract data type maxPriorityQucuc

/
1

Instances
Finite collection of elements, each has a priority Operations
empty():return true iff the queue is empty
size() :return number of elements in the queue
top() :return clement with maximum priority
del() :remove the element with largest priority from the queue
insert(x): insert the element x into the queue

DEPARTMENT OF CSE Page 52 of 53

-

DEPARTMENT OF CSE

Page 53 of 53

